منابع مشابه
Hilbert series of invariants, constant terms and Kostka-Foulkes polynomials
A problem that arose in the study of the mass of the neutrino led us to the evaluation of a constant term with a variety of ramifications into several areas from Invariant Theory, Representation Theory, the Theory of Symmetric Functions and Combinatorics. A significant by-product of our evaluation is the construction of a trigraded Cohen Macaulay basis for the Invariants under an action of SL n...
متن کاملHilbert theta series and invariants of genus 2 curves
Article history: Received 2 November 2014 Accepted 2 February 2015 Available online xxxx Communicated by Jerome Hoffman, Robert Perlis, Ling Long, Karl Mahlburg, Jorge Morales, Holly Swisher Dedicated to Professor Wen-Ching Winnie Li MSC: 14G35 11F55 11G18
متن کاملA Hilbert-Mumford-Criterion for SL2-Actions
Let the special linear group G := SL 2 act regularly on a Q-factorial variety X. Consider a maximal torus T ⊂ G and its normalizer N ⊂ G. We prove: If U ⊂ X is a maximal open N-invariant subset admitting a good quotient U → U/ /N with a divisorial quotient space, then the intersection W (U) of all translates g·U is open in X and admits a good quotient W (U) → W (U)/ /G with a divisorial quotien...
متن کاملSl2-action on Hilbert Schemes and Calogero-moser Spaces
We study the natural GL2-action on the Hilbert scheme of points in the plane, resp. SL2-action on the Calogero-Moser space. We describe the closure of the GL2-orbit, resp. SL2-orbit, of each point fixed by the corresponding diagonal torus. We also find the character of the representation of the group GL2 in the fiber of the Procesi bundle, and its Calogero-Moser analogue, over the SL2-fixed point.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2019
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199719500172